Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)
COND(true, x) → P(x)
COND(true, x) → ODD(x)
COND(true, x) → COND(odd(x), p(x))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)
COND(true, x) → P(x)
COND(true, x) → ODD(x)
COND(true, x) → COND(odd(x), p(x))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ODD(s(s(x))) → ODD(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(ODD(x1)) = (2)x_1   
POL(s(x1)) = 1 + (2)x_1   
The value of delta used in the strict ordering is 6.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x) → COND(odd(x), p(x))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


COND(true, x) → COND(odd(x), p(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(odd(x1)) = (1/4)x_1   
POL(true) = 1/4   
POL(false) = 0   
POL(p(x1)) = (1/2)x_1   
POL(s(x1)) = 4 + (2)x_1   
POL(COND(x1, x2)) = (1/2)x_1 + x_2   
POL(0) = 0   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(x))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.